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FURTHER TABULATION OF THE ERDOS-SELFRIDGE 
FUNCTION 

RICHARD F. LUKES, RENATE SCHEIDLER, AND HUGH C. WILLIAMS 

ABSTRACT. For a positive integer k, the Erdds-Selfridge function is the least 
integer g(k) > k + 1 such that all prime factors of (9(k )) exceed k. This 
paper describes a rapid method of tabulating g(k) using VLSI based sieving 
hardware. We investigate the number of admissible residues for each modulus 
in the underlying sieving problem and relate this number to the size of g(k). 
A table of values of g(k) for 135 < k < 200 is provided. 

1. INTRODUCTION 

For k > 1, denote by g(k) the least integer > k + 1 such that no prime p < k 
divides g(k))- This function grows rapidly with increasing k and is consequently 
difficult to compute for even modest values of k. The behavior of g(k) was first 
studied by Ecklund, Erd6s and Selfridge [2] who tabulated g(k) for k < 40 as well as 
g(42), g(46), and g(52). These are all the values of g(k) < 2500000 when k < 100. 
The table was extended to include all the values of g(k) for k < 140 by Scheidler 
and Williams [1] using sieving techniques. The largest of these values, g(139), is 
a 17 digit number. Sieving was continued for 141 < k < 155 but the results were 
never published. 

A number of lower bounds on g(k) were proved and conjectured in [2] and by 
Erdbs, Lacampagne and Selfridge in [3]. The best lower bound was recently es- 
tablished by Granville and Ramare [5] who proved that there exists an absolute 
positive constant c such that 

g(k) > exp(c(log k/ log log k) 2). 

This implies that g(k) grows faster than any polynomial in k. 
This paper further extends computations and provides values of g(k) for 135 < 

k < 200. We also repeated earlier tabulations and found an error in the value of 
g(138) given in [1]. The computation was performed on the Manitoba Scalable Sieve 
Unit (MSSU), a very fast VLSI based sieving device developed by Lukes, Patterson 
and Williams [4]. We used a modification of the algorithm given in [1]. To make 
this paper somewhat self-contained, we begin with a brief review of the basics of 
sieving as well as the sieving method used in our computations. We analyze the 
number of admissible residues of the sieving problem arising from g(k) in Section 
3. Section 4 compares the size of the sieving problem for g(k) with the actual value 
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of g(k) and investigates gaps between g(q - 1) and g(q) where q is a prime. Our 
implementation on MSSU is discussed in Section 5. The paper concludes with a 
table of values of g(k) (135 < k < 200). 

2. THE SIEVING ALGORITHM 

In order to solve a sieving problem, it is required to find solutions to a system 
of simultaneous linear congruences. More exactly, one needs to search for integers 
x such that 

(2.1) x (mod mi) E Ri for i = 1,2,... ,h, 

where h is a positive integer, the moduli M1, m2,... , mh are positive integers as- 
sumed to be pairwise relatively prime, and each set Ri = {ri, ri2,... , rinI, called 
the set of admissible residues for modulus mi, consists of nonnegative integers less 
than mi (i = 1, 2, ... , h). Boundary conditions are placed on x, i. e. we may require 
x to lie in a certain specified range, or we might wish to obtain the least solution of 
(2.1) that exceeds a fixed lower bound. Additional restrictions, checked by a filter, 
may be placed on x. 

Over the past 75 years, a number of mechanical as well as computer based 
machines for solving sieving problems have been constructed (see [4] for a history 
of these machines). MSSU is the most recent and by far the fastest such device. 

Our method for tabulating g(k) as well as some of the results in Section 3 are 
derived from Kummer's well-known result that the binomial coefficient (n) is rela- 
tively prime to a prime p if and only if there are no "carries" when k and n-k are 
added in base p (see [6, p. 220]). Since the sieving algorithm is described in detail 
in [1], we merely sketch it here. Let 

m 
k = E aipi, 0 < ai < p-1 for i = 0, 1, ...,m; am # 0 

i=o 

be the base p representation of k. (It is easy to compute the coefficients ai, see 
formula (2.1) in [1]). For i = 0, 1, ... , m, set 

Ci = ai, ai + 1,. p- 

and recursively define the sets 

Bo = Co, Bi = Bi-? + Cipi ={b + cpi b E Bi1, c E Ci} (i = 1, 2,... ,m). 

Then Bi = Co+Clp+C2p2+* .+ +Cipi for i = 0,1, ... ,m, and g(k) is the smallest 
integer n > k + 2 such that 

(2.2) n (mod pm+l) E Bm 

or equivalently, 

(2.3) n (mod pm) E Bmil 

and 

(2.4) [ 2] (mod p) > am. 

To compute g(k) for fixed k, the moduli mi in (2.1) are the values pm where p is 
a prime, p < k, and pm < k < pm+?, i.e. m = LlogP k]. For each modulus pm, 
the corresponding set of admissible residues is Bmi_. Each solution n of (2.3) is 
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checked for filter condition (2.4). The least integer n > k + 2 satisfying both (2.3) 
and (2.4) for all primes p < k is g(k). 

3. NUMBER OF ADMISSIBLE RESIDUES 

Let p < k be a fixed prime and set m = Llogp kj. Then each set Ci contains 
Ci = p-ai elements (i = 0,1,... ,m), so for i 5 j, we have ICip? + Cp = 

(p - aj)(p - aj). Hence, the number of residues for each modulus is given as follows. 

Lemma 3.1. The number of admissible residues for modulus pm is 
m-i 

rp = IBm-, I = JI (p-ai). 
i=O 

If the modulus is a prime, i. e. m = 1, then the base p representation of k is 
k = alp + ao, so p-ao = (a, + 1)p-k. Hence in this case, we have 

Corollary 3.2. If the modulus is a prime p, then p divides k + rp. 

Clearly, the number of residues rp for modulus pm is between 1 and pm, inclusive. 
If the number of admissible residues is maximal, i. e. rp = pm, then (2.3) is always 
satisfied and we do not need to include modulus pm in the congruences. It is easy 
to establish the exact form of k in the extreme cases rp = pm and rp = 1. For single 
residue congruences, we can also determine the unique residue. 

Lemma 3.3. rp = pm if and only if k = apm where 1 < a < p-1. 

Proof. By Lemma 3.1, rp = pm if and only if ai = 0 for i = 1,l,...m-1, so 
k = ampm, 1?< am <p 1. E 

Lemma 3.4. rp = 1 if and only if k = apm-1 where 2 < a < p. 

Proof. By Lemma 3.1, rp = 1 if and only if ai = p- 1 for i = 0, 1,.. ,m- 1, so 

m-i 

k = ampm + E (p - 1)p' = ampm + pm - 1 = (am + l)pm - 1 
i=O 

1 < am+l <P. j 

Lemma 3.5. If rp 1, then the residue corresponding to modulus pm is p-1. 

Proof. As in the previous lemma, if rp = 1, then ai = p-1 for i = 0, 1,. .. m-1, 
i.e. B,1 contains only the residue m 1(p - 1)pz = pm - 1. 

We now compare the number of admissible residues for the two consecutive values 
g(k - 1) and g(k) in the special case where k is a prime power. Let k = qt where q 
is a prime and t > 1. As before, let p < k be a fixed prime and set m = Llogp kj. 
To distinguish between quantities pertaining to different k values, we include k as 
an argument, i. e. write rp(k), Ci(k) etc. 

Case 1: p = q. Then m = t, k = pm and by Lemma 3.3, rp(k) =pm. Now k - 1= 

pm - 1 , so if m > 1, then k - 1 = p . pm-l - 1 and rp(k - 1) = 1 by Lemma 3.4 
(here, the corresponding modulus is pm-1). If m = 1, then k - 1 = p - 1 < p, so 
the moduli used in searching for g(k - 1) do not include a power of p. 
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Case 2: p 54 q. Then it is easy to see that llogp(k - 1)] = m. Let the p-ary repre- 
sentation of k - 1 be 

m 

k-1=Zaipi, O<ai <p-1 for i=0,1,... ,m; ami&O. 
i=O 

Since p does not divide k = qt, we must have ao 54 p-1, so the p-ary representation 
of k is 

m 

k = Zaipz + (ao + 1). 
i= 1 

Hence Co(k) = Co(k-1) \ao} and Ci(k) = Ci(k-1) for i = 1, 2, ... m. It follows 
that 

m-1 m-1 

rp (k) = (p,- ao-1 (, (- aj)= rp (k -1) - f (p,- aj) 
i=1 i=1 

= rp(k -1) (1 - ia 

In summary: 

Lemma 3.6. Let k = qt, q a prime, t > 1. Then for any prime p < k, the 
number of admissible residues for modulus pm, m = Llogp kj, satisfies the following 
properties. 

1. If p = q, then rp(k) = pm, rp(k -1) = 1 if m > 1, and no power of p is 
included in the moduli for k - 1 if m = 1. 

2. If pq, then 

rp (k) = rp(k - 1) (1- )' 
where kP k - 1 (mod p), 1 < kP < p - 1. 

Corollary 3.7. Let k = q be a prime. Then the moduli in the congruences for both 
g(q) and g(q - 1) are exactly the powers pm where p is a prime less than q and 
m = Llogp kj. Furthermore, for each such prime p, 

rp (q) = rp(q - 1) (1 -- ) , 

where qp _ q - 1 (mod p), 1 < qp < p -1. 

We conclude this section with a brief analysis of the filter conditions for both k 
and k - 1 when k = q is a prime. 

Lemma 3.8. If k = q is a prime, then the filter condition (2.4) is satisfied for any 
solution candidate n for either g(q) or g(q - 1). 

Proof. Let p < q be a prime. Since each solution candidate n for either g(q) or 
g(q - 1) satisfies n > (q - 1) + 2 = q + 1 > p, the left-hand side of (2.4) is always 
at least 1. If p < q, then the base p representations of q and q - 1, respectively, are 
q = p+ (q-p) and q- 1 = p+ (q-p- 1), so in either case am = a, = 1 and (2.4) 
always holds. If p = q, then the prime p is not included in the filter condition for 
k = q- 1, and for k = q, we have again am = a1 = 1, so (2.4) is always satisfied. E 
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is combined into a single congruence 

(5.2) x _ S1,2-S , ,Si (mod M) 

where M = m1m2 ... mg and the Si, (i = 1,2, ... , 1) are obtained using the Chinese 
Remainder Theorem. If the set of congruences (5.1) is selected such that I in (5.2) 
satisfies I < 32, then each residue Si in (5.2) can be assigned to a different sieve 
chip. The i-th chip now sieves on Mx + Si rather than x, which results in a speed- 
up of a factor M in the computation. Therefore, the congruences (5.1) should be 
selected among the many different partitions in such a way that M is maximal. 
Clearly, congruences with few admissible residues (single residue congruences in 
particular) and large moduli are most desirable. The number of choices is further 
increased when partitioning is combined with residue folding, since for partitioning 
purposes, a reduced modulus m = pl in (5.1) need not actually be supported by the 
underlying hardware. Fortunately, the total number of congruences is sufficiently 
small to make an exhaustive search for the optimal combination of residue folding 
and congruence partitioning computationally feasible. 

We conclude this section with a comment on the speed-up suggested in [1] in 
the case where k + 1 is composite. In this case, each solution candidate n for g(k) 
satisfies n -1 (mod k + 1), so one can sieve on (n + 1 )/(k + 1) rather than n and 
speed up the process by a factor of k + 1. The MSSU algorithm achieves essentially 
the same speed-up as follows. For each prime divisor p of k + 1, modulus pln is 

folded onto modulus pa where a is the largest exponent such that pa I k + 1. This 
results in a single residue congruence n _-1 (mod pa) (see the proof of Lemma 2 
in [1]). Combining these congruences for all primes dividing k + 1 yields a single 
residue congruence n =-1 k (mod k + 1). 

We recomputed g(k) for all k < 140 and found an error in the table given in [1] 
for k = 138. The correct value is g(k) = 601242167764223. We also computed g(k) 
for 141 < k < 200. A table of these values can be found at the end of the paper. 
To show the enormous increase in speed of MSSU versus OASiS, the device used 
for the computations in [1], we point out that OASiS required 11 days 11 hours for 
computing g(139), whereas MSSU achieved this task in a mere 4 minutes (including 
time to load and verify the problem). 

Sieving rates varied greatly for various values of k. The fastest sieving rate oc- 
curred for k = 199 with a hardware count rate of 7.5 x 1015 per second, requiring 
less than 20 hours to compute g(199). One of the more difficult values of k to 
compute was 198 with a hardware sieving rate of 3.3 x 1013. This would have taken 
more than 50 days to compute using only 32 sieve chips. However, we were able 
to re-partition the problem into 5 subproblems requiring 24 sieve chips each and 
were able to verify a solution in under 10 days. Due to the very low rate at which 
solution candidates were generated, solution filtering had a negligible effect on the 
the observed sieving rate. Surprisingly, even with the introduction of false solutions 
by residue folding, and optimizing out many of the sparse congruences using parti- 
tioning, sieving proceeded at essentially the maximum theoretical hardware sieving 
rate. Using a 6-way partitioning, it took approximately 30 days to compute the 
largest value found, g(200), which is a 23 digit number. 

In the table of values of g(k), the digits of g(k) are written in groups of at most 
ten to facilitate reading. Prime values of k are given in bold type. 

The authors wish to thank the referee for several helpful suggestions. 



1714 RICHARD F. LUKES, RENATE SCHEIDLER, AND HUGH C. WILLIAMS 

Lemma 3.8, we can ignore the filter condition (2.4), so from (2.3), we obtain 

P (k) - rp(k) 

for both k = q and k = q + 1. Corollary 3.7 implies that 

rp(q) < rp(q -1(-) 

therefore 

P(q) ?P(q -1) j(I!) 
p<q-1 

P 

By Mertens' theorem 

II( p log k 

where -y is Euler's constant, hence the two probabilities P(q - 1) and P(q) will tend 
to differ by at least a factor which is proportional to log q. Thus, we expect the 
gaps between g(q - 1) and g(q) to increase significantly for large primes q. 

5. IMPLEMENTATION 

NISSU utilizes 32 VLSI chips operating in parallel, each of which implements an 
electronic sieve device performing at a rate of 192 million trials per second. Each 
individual chip supports the moduli 16, 9, 25, and 49, as well as the next 26 primes 
53 through 113 in hardware. 

For fixed k, the values of all the admissible residues in the sieving problem for 
g(k) are precomputed in software and passed to MSSU. MSSU then optimizes this 
information as described below to best fit its hardware. An on-line filter checks 
each value n which satisfies (2.3) for condition (2.4). The computation terminates 
as soon as such a value n is let through by the filter, this value being g(k). 

Since many of the required moduli pm are not available in hardware, a congruence 
(mod pm) may be reduced to a congruence (mod p') where I < m. The residues in 
Bin are then mapped or folded onto a possibly smaller set of residues (mod pi). 

The congruences "lost" in the process of residue folding are implemented in software 
using an off-line filter that screens out "false" solutions. This does not slow down 
the sieving process, as the number of false solutions is sufficiently small to avoid a 
bottleneck. 

MSSU further optimizes the computation by partitioning congruences. A sub- 
set of moduli {mI, m2,... ,m9} is selected, and for each modulus mj, a sub- 
set {SJ, Sj2,... Sj1} of the corresponding admissible residues is chosen (j = 

1, 2,.. ,g). The set of congruences 

(5.1) x -S',Sj2, .Slj (mod m j) (j = 1,2,... ,g) 
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is combined into a single congruence 

(5.2) X S1, S2,... , Si (mod M) 

where M = mlm2 ... mg and the Si, (i = 1,2, ... , 1) are obtained using the Chinese 
Remainder Theorem. If the set of congruences (5.1) is selected such that I in (5.2) 
satisfies I < 32, then each residue Si in (5.2) can be assigned to a different sieve 
chip. The i-th chip now sieves on Mx + Si rather than x, which results in a speed- 
up of a factor M in the computation. Therefore, the congruences (5.1) should be 
selected among the many different partitions in such a way that M is maximal. 
Clearly, congruences with few admissible residues (single residue congruences in 
particular) and large moduli are most desirable. The number of choices is further 
increased when partitioning is combined with residue folding, since for partitioning 
purposes, a reduced modulus mj = pl in (5.1) need not actually be supported by the 
underlying hardware. Fortunately, the total number of congruences is sufficiently 
small to make an exhaustive search for the optimal combination of residue folding 
and congruence partitioning computationally feasible. 

We conclude this section with a comment on the speed-up suggested in [1] in 
the case where k + 1 is composite. In this case, each solution candidate n for g(k) 
satisfies n -1 (mod k + 1), so one can sieve on (n + 1 )/(k + 1) rather than n and 
speed up the process by a factor of k + 1. The MSSU algorithm achieves essentially 
the same speed-up as follows. For each prime divisor p of k + 1, modulus pm is 
folded onto modulus pa where a is the largest exponent such that pa I k + 1. This 
results in a single residue congruence n _-1 (mod pa) (see the proof of Lemma 2 
in [1]). Combining these congruences for all primes dividing k + 1 yields a single 
residue congruence n -1 -k (mod k + 1). 

We recomputed g(k) for all k < 140 and found an error in the table given in [1] 
for k = 138. The correct value is g(k) = 601242167764223. We also computed g(k) 
for 141 < k < 200. A table of these values can be found at the end of the paper. 
To show the enormous increase in speed of MSSU versus OASiS, the device used 
for the computations in [1], we point out that OASiS required 11 days 11 hours for 
computing g(139), whereas MSSU achieved this task in a mere 4 minutes (including 
time to load and verify the problem). 

Sieving rates varied greatly for various values of k. The fastest sieving rate oc- 
curred for k = 199 with a hardware count rate of 7.5 x 1015 per second, requiring 
less than 20 hours to compute g(199). One of the more difficult values of k to 
compute was 198 with a hardware sieving rate of 3.3 x 1013. This would have taken 
more than 50 days to compute using only 32 sieve chips. However, we were able 
to re-partition the problem into 5 subproblems requiring 24 sieve chips each and 
were able to verify a solution in under 10 days. Due to the very low rate at which 
solution candidates were generated, solution filtering had a negligible effect on the 
the observed sieving rate. Surprisingly, even with the introduction of false solutions 
by residue folding, and optimizing out many of the sparse congruences using parti- 
tioning, sieving proceeded at essentially the maximum theoretical hardware sieving 
rate. Using a 6-way partitioning, it took approximately 30 days to compute the 
largest value found, g(200), which is a 23 digit number. 

In the table of values of g(k), the digits of g(k) are written in groups of at most 
ten to facilitate reading. Prime values of k are given in bold type. 

The authors wish to thank the referee for several helpful suggestions. 
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k g(k) 
135 315 7756005623 
136 413 8898693368 
137 95159 8054985213 
138 60124 2167764223 
139 2597202 7636644319 
140 908985 4222866845 
141 6333152 3816662671 
142 1990465 6320115423 
143 1542289 5461804543 
144 139719 3586455769 
145 339515 6674599871 
146 17509 5016485374 
147 72531 1731192223 
148 1180 8400809148 
149 542394 5342959799 
150 47313 8520098551 
151 3258989 9217872863 
152 15549796 7465547419 
153 53518499 5256751839 
154 17864690 7528990874 
155 4129798 4000013467 
156 2527233 4970944959 
157 104130829 7102375167 
158 4702566 0758882783 
159 6485551 8266246559 
160 1664745 6280932287 
161 342159 0108339941 
162 20212 9337635322 
163 5188127 2225707439 
164 14664726 1829992439 
165 9865227 4401898671 
166 347584 7868933047 
167 277308556 4165092343 
168 48669223 2365306798 
169 72698097 9380669099 

k g(k) 
170 5942841 5007516671 
171 28496594 9074228671 
172 11223206 5794463997 
173 138175311 6390427373 
174 11057733 6695616174 
175 194409219 4361247743 
176 22625530 3912072703 
177 19246523 8561441207 
178 684480 9280136434 
179 90787419 7930300859 
180 43976301 6255983614 
181 2 8336150170 1232528573 
182 2898883863 4918997183 
183 5351624705 6143575999 
184 2662687844 8827721469 
185 3713603655 0263266493 
186 1 4274157994 6200597438 
187 220884991 2824359867 
188 127198106 5611178943 
189 295629805 3153332989 
190 45565223 2192890367 
191 939688321 4719852991 
192 106365072 4436901873 
193 4 3525141972 8230720249 
194 1 2638743588 3753706219 
195 2632591216 1870817495 
196 78151666 4215365373 
197 4 2796097712 6350089949 
198 1 3533936460 3654686198 
199 4 0316886886 7096129999 
200 [520 8783889271 0191382732 
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